Review of the Best Sleep Trackers

Published:
Last Updated: Jun 27, 2020

Written by

Sleep tracking has gained immense popularity over the past few years. Biohackers, fitness enthusiasts and healthy living advocates who want to improve their well-being have all realized the importance of a good night’s sleep.

But to improve your sleep, you need a way to measure it objectively. That’s where sleep trackers can help — or so their manufacturers claim.

For this article, I tested and reviewed various wearable and non-wearable sleep trackers to find out which ones are accurate and reliable.

Spoiler alert: Most sleep trackers are gimmicky and utterly unreliable, with their inaccurate data paving the way for confusion and anxiety.

Continue reading to find out how sleep tracking works and what to look for when purchasing a sleep monitor. I’ll also recommend tracking devices that I’ve found to be reliable and worth your money.

What Does a Sleep Monitor Do?

Sleep tracking can mean different things depending on who you ask and what type of sleep monitor you use.

In its most basic form, sleep tracking means measuring the time you’re asleep vs. the time you’re awake. This is often done by monitoring (wrist or full body) movement. The more reliable sleep tracking devices also keep tabs on your heart rate and other biometrics in an attempt to improve their accuracy.

The next stage of sleep monitoring includes detection and reporting on the four stages of sleep, which are:

  • Awake time
  • Light sleep
  • Deep sleep (also known as slow-wave sleep)
  • REM sleep

It’s worth noting that detecting the different sleep phases is inherently more involved than simply differentiating between awake time and sleep time. As a result, you can expect a higher degree of unreliability among most sleep trackers when it comes to phase reporting.

How Can a Sleep Monitor Help You Sleep Better?

How Can a Sleep Monitor Help You Sleep Better?
You can’t improve what you don’t measure.

Many people use sleep tracking devices because they want to improve their sleep habits or sleep patterns by sleeping longer, falling asleep quicker, getting more restorative sleep (aka sleeping better), waking up less, or a combination of those goals.

Below are five common sleep parameters that you can directly or indirectly influence in order to improve your overall sleep:

  • Total time in bed
  • Total sleep
  • Sleep latency (how long it takes you to fall asleep)
  • Sleep consistency
  • Time spent in restorative stages of sleep (deep and REM)

Before you try making adjustments to any of these five parameters, it’s important to establish a baseline using a reliable sleep tracker. Only then can you judge the extent to which certain lifestyle changes positively or negatively influence your sleep.

For example, I’ve noticed that I get more consistent deep and REM sleep if I go to bed at approximately the same time every day. That’s called sleep consistency. I’ve also noticed that drinking alcohol before bedtime makes me fall asleep quicker, but I don’t get as much deep sleep as when I don’t drink.

You can learn more about that and all the other factors that influence sleep in this article.

Side Effects of Inaccurate Tracking Devices

Inaccurate sleep data from NapBot
Inaccurate sleep data from NapBot.

The problem with inaccurate sleep trackers is that they might induce stress and anxiety with misleading data and sleep scores.

A few years ago, I had a Jawbone UP wristband that I used to track my sleep. After a few weeks of monitoring my data, I got anxious because of the little deep sleep the device reported: according to the UP, I got only between 20 and 40 minutes of deep sleep every night.

After doing some research, I learned that that’s not nearly enough time for the body to recover and go through all its crucial restorative processes (such as releasing growth hormone). If those readings were correct, I would have felt terrible and exhausted during the day.

I didn’t, which led me to surmise that the device was wildly inaccurate. As a result, I stopped wearing the Jawbone and decided to look for alternative solutions, including apps that would work in combination with the Apple Watch.

While it’s difficult to determine the accuracy of a sleep tracker without performing validation studies, you can tell if a device is likely unreliable by understanding what sensors and technology it uses.

If you’re not interested in the details, you can skip the next section and jump right to my recommendations.

Types of Sleep Trackers

At a base level, there are two different types of sleep trackers: those you wear on your body and those that don’t require any contact with your skin. The latter are called non-wearable or contactless devices.

Wearable Sleep Trackers

Michael wearing both Apple Watch and WHOOP
Michael wearing both Apple Watch and WHOOP

As the name implies, wearable devices are worn on your body — typically on your wrist, arm or around your chest.

Popular devices in the wearable category include:

Of course, there are tons of other devices that I haven’t listed, but the ones above are among the most popular.

Non-Wearable Sleep Trackers

Non-wearable or contactless sleep trackers are devices you place under your sheets, under your mattress, or on a nightstand next to your bed. Most of the devices in this category work by detecting movement via pressure sensors or via a radio frequency that monitors your respiratory rate (breathing).

Popular devices in the non-wearable category include:

I’m pretty excited to see what Apple is going to do around sleep tracking. I was hoping the company would introduce sleep tracking with the Apple Watch Series 5 and watchOS 6, but they didn’t — despite evidence in watchOS’s source code that they’re working on it.

Considering that they acquired Beddit, it only makes sense for Apple to combine Beddit’s contactless technology with the wearable sensors of a future Apple Watch.

To be honest, I’m not convinced that contactless sleep tracking is accurate enough to be useful. There are just too many factors that can negatively influence the signal the sensors receive, including:

  • Motion caused by a pet or the person you’re sharing a bed with
  • Difficulty acquiring a good heart rate measurement
  • Without good heart rate data, movement alone isn’t enough to reliably detect sleep

As a result, I would not recommend non-wearable sleep trackers unless they work in conjunction with a wearable sensor (such as the Apple Watch).

How Do Sleep Trackers Work?

Both sleep and activity tracking rely on accurate HR data
Both sleep and activity tracking rely on accurate HR data

Sleep tracking can be accomplished using various technologies, some of which I briefly mentioned above.

In a nutshell, sleep trackers use one or a combination of the following biometrics in an attempt to accurately detect sleep:

  • Movement
  • Heart rate (including heart rate variability)
  • Skin conductance
  • Skin temperature
  • Respiratory rate
  • Blood oxygen saturation

Let’s be clear: none of these parameters measure sleep directly — you need to monitor brain waves to do that. Instead, the above biometrics can be used as a method for estimating sleep, as noted by Alan Schwartz, M.D., director of the Sleep Disorders Center at Johns Hopkins Bayview Medical Center.

So let’s explore how each of these technologies can impact the reliability and accuracy of sleep monitoring devices.

Monitor Movement

Basic sleep tracking devices, such as the Withings Steel, rely on wrist movement patterns to guess if you’re sleeping (and in what stage of sleep you’re in).

A lack of movement can certainly be an indication of sleep, but it’s an incredibly unreliable parameter. If you lie in bed watching TV, you might not move for an extended period, tricking this type of monitor into thinking that you’re asleep.

I experienced such false-positives a couple of times with Jawbone UP and various Apple Watch sleep monitoring apps.

Monitor Heart Rate (HR)

Basic fitness tracker monitoring HR
Basic fitness tracker monitoring heart rate.

An accurate heart rate reading, especially when combined with monitoring movement, can measurably improve the reliability of sleep trackers.

That’s because the heart rate changes throughout the various stages of sleep. For example, during deep sleep your resting heart rate is typically at its lowest.

Unfortunately, getting an accurate heart rate reading is more difficult than you might imagine. That’s a big problem because a discrepancy of 10-20 beats per minute can dramatically skew the sleep data.

Monitor Skin Conductance

Changes in electrodermal activity and heart rate in response to music
Changes in electrodermal activity and heart rate in response to music.

Skin conductance, or electrodermal activity, is a term that describes the electrical characteristics of the skin. In other words, the amount of electricity that can pass through the skin varies, based on different factors.

The interesting thing is that skin conductance changes based on the stage of sleep you’re in. That’s why WHOOP has a built-in sensor that measures electrodermal activity to further improve the accuracy of sleep stage detection.

Monitor Ambient Skin Temperature

Your body’s core temperature fluctuates while you sleep. For example, “non-rapid eye movement (NREM) sleep episodes are accompanied by core and brain cooling.”

As a result, sleep monitoring devices can keep tabs on your skin temperature — much like a fever thermometer — to detect changes in your sleep cycle and, in particular, sleep onset.

Heart Rate Variability (HRV)

HRV is the difference in timings between heart beats
HRV is the difference in timing between heartbeats.

Heart Rate Variability or HRV is the difference in timing between heart beats. For example, if your heart beats 60 times per minute, the timing between each beat varies by a few milliseconds.

The amount of variability is determined by the two (competing) players of your nervous system: the sympathetic and the parasympathetic branch.

Studies have shown that when you sleep, your HRV is greater than it is during the day. That makes sense, because when you sleep the parasympathetic nervous system takes over to take care of digestion and recovery.

Sleep and fitness trackers, such as the WHOOP*, have incredibly accurate HRV monitoring capabilities, which can help improve the accuracy of sleep tracking and many other things.

Rate of Breathing

Michael's respiratory rate (blue) and heart rate (green) as reported by Emfit QS
Michael’s respiratory rate (blue) and heart rate (green) as reported by Emfit QS

Some contactless tracking technologies rely on radio frequency to monitor your respiratory rate.

I’ve never tested such devices, but I have gathered from other reviewers* that they aren’t incredibly reliable.

Force and Pressure Sensors

Another technique that non-wearable trackers use is force and pressure sensors that detect body movement and even heart rate.

I’m highly skeptical of using a sensor under the mattress to detect my heart rate and stages of sleep.

Based on feedback* from others, such sensors often detect sleep when there is a lack of movement caused by inactivity, such as reading a book.

Since Apple acquired Beddit (one of the devices that uses under-the-sheets sensors) I can imagine that paired with a wrist-worn device — such as an Apple Watch — you can get fairly accurate data, even with low HR sampling data from the wrist-worn device.

Electroencephalography (EEG)

Would you sleep well hooked up to machines and sensors?
Would you sleep well hooked up to machines and sensors?

Arguably the gold standard in sleep tracking is EEG, which monitors brain waves and detects the various stages of sleep.

Studies have shown that EEG-based sleep tracking is 91% accurate and that it can be further improved by being paired with wrist-worn devices that use the technologies noted above.

If you’re suffering from a sleep disorder and are considering going to a sleep lab to do a sleep study, just know that you probably have to spend more than one night there to get accurate data.

Why?

Imagine you have to sleep in a medical facility, hooked up to a bunch of sensors. That’s anxiety-inducing and, chances are, your sleep might not look anything like it does in your own bed.

I’ve been told that many sleep labs throw out the results of the first night and ask patients to come back for a second night. The assumption is that you’ll be more comfortable the second time around, resulting in much better and more usable data.

How HR is Measured

How optical heart rate sensors work
How optical heart rate sensors work.

Most wrist-worn HR monitors use a technology called photoplethysmography to measure heart rate.

That basically means that they use LEDs to shine light through your skin.

As blood pumps through your blood vessels, some of that light gets reflected. By measuring how much light gets reflected each time, an optical sensor can measure how often the heart beats.

Signal Analysis and Algorithm

The signal quality and algorithm play a major role in data quality
The signal quality and algorithm play a major role in data quality.

Besides the physical challenges of shining light through blood vessels and accurately capturing the reflection, it’s up to complex algorithms in the device to convert the signal into a more or less accurate heart rate reading.

One of the big issues at play is “noise.” For example, if the sensor doesn’t have sufficiently tight contact with the skin, ambient light can interfere with the reflecting light from the LEDs, thus reducing the overall signal quality.

On the other end of the spectrum, a sensor that fits too tightly might restrict blood flow and thus also reduce signal quality. Either way, the resulting heart rate reading might be inaccurate.

Consequently, if the HR reading is inaccurate, the resulting sleep monitoring will be as well. In my experience, most standard straps that look like regular watch straps don’t provide a good enough fit for the sensor to remain in constant contact with the skin.

That’s why I use the Sport Loop *with my Apple Watch and the ProKnit strap with my WHOOP*. Regardless of what brand or type of device you choose, make sure it comes with a good strap that can be easily adjusted for a perfect fit. Trust me, that makes all the difference!

The second influencing factor is the quality of the signal processing algorithm. Unfortunately, most brands don’t share much information about their algorithm and the expertise of the engineers who designed it.

That’s why I’d recommend sticking with brands that either have a track record of developing advanced technology in the field, or that can back up their work with validation studies involving well-regarded data scientists.

Another factor that can influence the reliability and accuracy of any sensor is the frequency of the biometric data acquisition.

Most trackers measure your heart rate only once every few minutes. That’s also true for the Apple Watch, unless the Workout app is active. During workouts, the Apple Watch measures your heart rate every few seconds.

The most accurate sleep trackers I’ve seen, such as the WHOOP*, measure your heart rate (and other biometrics) 100 times per second or more. That’s important, because it allows them to immediately detect small changes in heart rate patterns.

How Accurate Are Sleep Trackers?

Sleep stage analysis by Emfit QS
Sleep stage analysis by Emfit QS

Most sleep trackers that I’ve tested or researched are inherently inaccurate for one, or a combination of, the following reasons:

  • Reliance on only one or two biometric sources of information (i.e., movement or heart rate)
  • Low sampling data
  • Inadequate algorithm
  • Issues with capturing biometric data due lack of contact with the skin (i.e., strap too lose)

Confirming the accuracy of any sleep tracker is difficult, unless you compare it head-to-head with an EEG in a sleep lab.

Fortunately, the company behind my favorite sleep tracker — WHOOP*has done exactly that. That’s one of the reasons why I trust WHOOP’s data more than that of any other device.

If your sleep tracker of choice doesn’t have any validation studies to show for, here are some factors that can help you determine how accurate (or not) the device might be.

Sensors and Biometric Input

The fewer sources of biometric data your sleep tracker captures, the less accurate it will be.

I would categorically avoid any tracking devices that rely only on an accelerometer to detect movement. That’s because movement alone is not a reliable predictor of sleep.

An example of a device that falls into this category would be the Withings Steel.

Devices that combine an accelerometer with a heart rate sensor are much better.

However, there’s a significant difference between sensors that capture the heart rate once every five minutes vs. 100 times per second.

The higher the sampling frequency, the easier it is to detect changes in heart rate that might indicate a change of sleep stage.

My advice is to use a sleep tracker that leverages as many different input sources as possible.

Algorithm

The signal processing algorithm plays a major role in the quality of the results. That’s true in particular when the sampling conditions are less than perfect, such as when the sensor doesn’t have sufficient contact with the skin due to a loose strap.

It’s also important that the algorithm doesn’t fill gaps in the captured data with “guesses” just so that it can “complete the picture.”

That means if the sensor can’t capture good enough data, it should discard it instead of guessing what the data (such as heart rate) might have been, based on readings before and after the gap.

Companies like WHOOP have entire data science teams that leverage machine learning combined with huge datasets from professional athletes and fitness enthusiasts to fine-tune their algorithms.

That makes a huge difference in the quality of the reported sleep tracking data.

Type of Strap

WHOOP - A good and tight fit are important
WHOOP – A good and tight fit are important

As I previously mentioned, the type of strap directly impacts how well in-contact the sensor is with the skin.

The better the contact of the sensor with the skin, the better signal it will receive. Poor signal quality means more reliance on the sleep tracker’s software algorithm, and often results in a less reliable heart rate measurement and sleep tracking.

The strap around your wrist should be tight enough to prevent both the sensor from moving and ambient light from reaching the sensor. However, it shouldn’t be so tight that the pressure limits blood flow in your skin.

As a general rule, it should be difficult to get your pinky finger between the strap and your wrist.

Most straps that I’ve tried in the past are difficult to correctly adjust for a perfect fit — especially traditional watch-like straps, which often produce either a much too loose or much too tight fit.

That’s why I like endlessly-adjustable straps like the Apple Sport Loop or the WHOOP’s ProKnit.

Best Wearable Sleep Trackers

Now that you know everything you need to know about sleep tracking and the pros and cons of the technology that makes it possible, let’s run down the best and most accurate wearable devices.

1. WHOOP Sleep Tracking

Michael's WHOOP Strap 3.0 with ProKnit Strap
Michael’s WHOOP Strap 3.0 with ProKnit Strap
Pros
  • Multiple sensors, paired with an advanced machine learning algorithm
  • Developed by data scientists
  • Validated with pro athletes
  • Slick design and comfortable to wear 24/7
  • Actionable data that improves your health and well-being
  • Five-day battery life
Cons
  • Price of membership

The WHOOP strap is arguably the most advanced and most reliable sleep tracker on the market.

Funnily enough, sleep stage tracking wasn’t even the primary goal when WHOOP set out to develop the most sophisticated fitness tracker for both consumers and pro athletes.

So how did WHOOP became such a reliable sleep monitor?

The team at WHOOP wanted to get the most accurate heart rate variability (HRV) readings possible to determine the function and state of the wearer’s nervous system. The problem is that HRV is a constantly-changing parameter that can fluctuate widely, especially when you’re awake and receive sensory input from your surroundings.

The best time to take an HRV reading is during deep sleep, because during that phase of sleep the body doesn’t receive and process any external input. So WHOOP had to develop technology that could reliably detect deep sleep to take an HRV reading.

The byproduct of that effort is the advanced sleep tracking capability that’s built into WHOOP.

To accomplish that, the team at WHOOP not only employs data scientists and machine learning, the company also equipped the wrist-worn device with four different sensors that sample data 100 times per second.

Onboard sensors include:

  • Optical heart rate sensor
  • 3D gyroscope to detect movement and respiratory rate
  • Skin conductance to detect changes in electrodermal activity
  • Ambient temperature to detect changes in skin temperature

All of those sensors, combined with a machine learning algorithm that constantly learns from data from thousands of elite athletes and fitness enthusiasts, makes WHOOP my favorite sleep tracker.

What makes WHOOP stand out from the competition is the validation studies the company has performed. In other words, there’s scientific evidence that backs up the accuracy and reliability of WHOOP’s data.

Of course, as I mentioned above, a perfect fit is paramount for WHOOP to do its job. If your WHOOP is too loose or too tight, you’ll get bad data.

See here for a full WHOOP review that goes into much more detail on all of its features.

If you’d like to give WHOOP a try, you can use the link below to get 10% off your membership fee.

Try WHOOP*

2. Oura Ring

Oura vs. WHOOP
Oura Ring
Pros
  • Combination of sensors
  • High sampling data
  • Long battery life
Cons
  • Doesn’t track skin conductance
  • Lack of validation studies
  • You have to take the ring off for charging

The Oura Ring is — as the name implies — a ring that’s packed with advanced sensors that measure heart rate, body temperature, heart rate variability and movement 250 times per second.

What’s interesting about this form factor is that if you get the proper ring size, you can practically ensure a perfect fit.

Additionally, I think that a ring is an appealing method for wearing a device 24/7. Some people might not like having a tracker strapped on their wrist literally all the time, but most are OK with wearing a ring.

What’s missing from the Oura Ring is validation and studies involving scientists and real-world data from a combination of regular users and elite athletes. That’s where I think WHOOP has a leg up.

The other issue with Oura Ring isn’t related to sleep tracking at all; it’s that you shouldn’t wear the ring when working out because you might scratch or damage it when your hands come in contact with exercise equipment.

That’s one of the reasons why I haven’t ordered the Oura Ring yet — I don’t want to take it on and off every day when I go work out.

Try Oura Ring*

3. Biostrap

Biostrap Health and Activity Tracker
Biostrap Health and Activity Tracker.
Pros
  • Monitors heart rate, HRV, O2 saturation and respiratory rate
  • Tracks your snoring levels
  • Some features are backed up by validation studies
Cons
  • Samples data only every two minutes
  • Without membership, the sampling rate is even lower
  • You have to take the strap off for charging

Biostrap is another interesting technology that relies on various biometric parameters to detect sleep, including heart rate, heart rate variability, oxygen saturation, and respiratory rate.

It doesn’t do skin conductance and temperature, and it only samples data every two minutes if you sign up for a monthly membership. Without a membership, the sampling frequency is even lower.

What I like about Biostrap is that some of its features — especially around the heart rate sensor — are backed up by validation studies. However, I didn’t see any specific studies that confirm the reliability of sleep and sleep stage detection.

The other thing that might be an inconvenience for some users is that you have to take the strap off for charging. In comparison, I can charge my WHOOP by simply slapping on the battery pack, without having to take off the strap.

Try Biostrap

To learn more about how Biostrap compares to WHOOP, check out this in-depth review and comparison.

Wearable Sleep Trackers I Wouldn’t Recommend

The list below features sleep trackers that I wouldn’t recommend, based on the technology they use.

These devices might accurately track your heart rate, but I doubt — given their technological limitations — that they can reliably track your sleep (and your stages of sleep in particular).

If you’re reading this and you represent one of these brands, I’d be more than happy to wear your device for a few weeks and report back here — just give me a buzz.

Fitbit Versa 2

Fitbit Versa 2
Fitbit Versa 2

Fitbit offers a range of smart watches and fitness straps that the company claims can accurately track sleep.

Fitbit’s flagship model is the Versa 2, and it has implemented sleep tracking via a combination of an optical heart rate tracker and a MEMS three-axis accelerometer.

Being limited to only two biometric parameters makes the Versa 2 and all other Fitbits relatively unreliable sleep monitors — especially as far as sleep stages are concerned.

I’ve even heard some reports of the Versa incorrectly recording HR data while it wasn’t even being worn.

If the software algorithm in the Fitbit can’t even tell the difference between a real pulse and light reflected by a countertop, I have no trust in its ability to distinguish between the various stages of sleep.

Fitbit on Amazon*

Apple Watch

Apple Watch Series 4
Apple Watch Series 4.

Considering that the Apple Watch’s heart rate sensor and ECG feature are both FDA approved and have shown to be incredibly accurate in third-party testing (and my own validation trials), you would expect that sleep tracking would be fairly accurate as well.

Unfortunately, that’s not the case (yet).

Note that while the Apple Watch by itself doesn’t offer any sleep tracking features, I expect Apple to introduce those capabilities in 2020.

For now, you have to use third-party apps such as Sleep++ or NapBot to do the job. I’ve tried both (and others) and none of them have worked accurately and reliably.

When I first tried NapBot, the app detected hours of light sleep while I wasn’t even wearing the watch because it was charging. After I manually edited the incorrectly recorded sleep, I tried it again the next night.

Based on NapBot’s data, I spent only 2% of my sleep in deep sleep. If that was the case, I would have felt like trash that day.

The bottom line is that the Apple Watch in its current state isn’t a good sleep tracker — even though I wish it was.

The primary reason for that is the Apple Watch’s slow HR sampling frequency (every few minutes) and the lack of additional sensors.

Apple Watch on Amazon*

Polar M430

Polar M430 Activity Tracker
Polar M430 Activity Tracker.

Polar is known for making excellent heart rate sensors. I used to have a Polar chest strap in high school when I was a cross-country runner.

Based on their technological expertise, experience and feedback from users who have done side-by-side comparisons, I don’t doubt that their heart rate sensor is fairly accurate.

However, considering that the Polar M430 uses only HR and motion to detect sleep, I seriously doubt that sleep stage detection is accurate and reliable.

Polar M430 on Amazon*

Withings Steel (Nokia Steel)

Withings Steel Smart Watch
Withings Steel Smart Watch.

Sleep tracking in the Withings Steel is a gimmick, plain and simple. The watch relies only on its high precision MEMS three-axis accelerometer. That means that if you don’t move your wrist for 15 minutes, it assumes you’re sleeping.

That’s all I have to say about that.

Shop Withings Steel*

What Are the Best Non-Wearable Sleep Trackers?

As I mentioned above, I don’t entirely trust any contactless sleep monitor to accurately detect my biometrics and sleep phases. But despite my lack of trust, and all the negative reviews I’ve seen about those devices, I ordered the EMFIT QS and will update this article in a few days based on my findings.

For now, here’s my assessment of the “best” non-wearable sleep tracking devices on the market.

Emfit QS

Emfit QS Non-wearable sleep monitor
Emfit QS Non-Wearable Sleep Monitor.

The Emfit QS is an under-the-mattress sleep tracker that can supposedly also capture your HRV. What’s convenient about the EMFIT QS is that it goes between the box spring and the mattress, instead of underneath the sheets. That makes the sensor much less likely to move around or be uncomfortable.

The device relies on technology called ballistocardiography. That means it can detect the force of your beating heart through the mattress via breathing movements. Think of it as a super-sensitive stethoscope.

The science behind ballistocardiography is sound, and there are numerous validation studies available to back it up. So I’m interested to see how well this works in a shared bed, and how Emfit can translate a good HR reading into accurate sleep analysis.

I’m still skeptical, but as I mentioned before, I have ordered one of these devices and will update this article with my findings soon.

Emfit on Amazon*

Update After Testing Emfit QS [10/31/2019]

I had a chance to test the Emfit QS sleep tracker for a couple of days and, at first, the recorded data was similar to what WHOOP reported.

Completely inaccurate sleep tracking data from last night.
Completely inaccurate sleep tracking data from last night.

Last night, my wife and I went out for a date night and I over-indulged in Persian kabobs. Needless to say, I didn’t sleep well and woke up at 4:23 A.M. A few minutes later, I got out of bed and started my day.

I looked at my WHOOP data: it correctly recorded that I slept from 8:46 P.M. to 4:23 A.M. Emfit, on the other hand, reported that I fell asleep at 7:50 P.M., had my first deep sleep episode at 8:30 P.M., and that I was in REM sleep between 4:50 and 5:10 A.M.

That’s completely inaccurate, and it confirmed my earlier suspicion that contactless sleep trackers only work under perfect conditions. In other words, when you’re alone in bed, trying to sleep instead of having sex or having someone next to you who might influence the sensor’s readings.

Beautyrest Sleeptracker

Beautyrest Sleeptracker
Beautyrest Sleeptracker.

Beautyrest is a brand of the Simmons Bedding Company — a mattress manufacturer. While you could argue that they should know a lot about sleep, I frankly doubt they know much about the physiology of it (or the technology required to accurately track it).

My opinion aside, Beautyrest uses passive piezoelectric sensors (pressure sensors) under the mattress to detect even the smallest amount of pressure from movement.

Using those sensors, Beautyrest claims it can accurately monitor respiration and heart rate, light sleep, deep sleep and REM cycles in addition to body movement and interruptions.

Sleeptracker® by Serta Simmons is clinically proven to monitor sleep patterns with an accuracy of over 90% for 90% of the population compared to medically operated professional polysomnography.

Fullpower

The problem is that I couldn’t find any proof that the underlying technology is as accurate as Fullpower (the tech provider behind Sleeptracker) claims.

Beautyrest on Amazon*

Beddit Sleep Monitor

Beddit by Apple
Beddit by Apple

Beddit also uses Piezo force sensors to detect movement. But instead of going under the mattress, you have to place the 2mm-thick sensor strip under your sheets.

What I like about Beddit is that the company doesn’t claim to accurately detect the stages of sleep. Instead, Beddit simply differentiates between time in bed, total sleep time, time to fall asleep and time awake.

The accuracy of Beddit’s data ultimately boils down to your sleeping patterns. If you go to bed without reading a book or watching TV, you can probably get reasonably-accurate data.

However, if you often lie in bed doing something other than sleeping that doesn’t involve movement, you’ll probably get a lot of false positives.

Beddit in the Apple Store

Withings Sleep (Nokia Sleep)

Withings Sleep Contactless Sleep Monitor
Withings Sleep Contactless Sleep Monitor.

Withings Sleep is another under-the-mattress device that can supposedly track your overall sleep, sleep stages, respiratory rate, heart rate and snoring.

The idea behind this product is that your beating heart, breathing or snoring all cause different movement patterns that the sensor can pick up.

As I mentioned before, I’m suspicious that a $99 device can accurately pick up and correctly identify those patterns, especially if several of them happen concurrently.

Shop Withings Sleep*

ResMed S+

ResMed S+ Sleep Monitor
ResMed S+ Sleep Monitor.

Unlike all the other contactless monitors I mentioned above, the ResMed S+ doesn’t have to be placed underneath the mattress. Instead, you have to position it on a nightstand between 1.3 and 3.9 feet away from your bed.

Additionally, you should angle the unit so it faces your chest, so that the ultra-low-power radio waves can detect your breathing and movement.

By relying so much on the correct positioning of the device relative to your body, I think there’s a lot of potential for stuff to go wrong, resulting in inaccurate data.

Additionally, it seems unclear if ResMed still supports this device. The official homepage has a 2015 copyright notice and a lot of reviewers on Amazon* have complained that the backend service that stores all your data has shut down.

ResMed S+ on Amazon*

Frequently Asked Questions

How accurate are personal sleep trackers?

Most of the personal sleep trackers on the market are gimmicks because they don’t have the required sensors to accurately detect sleep and, in particular, stages of sleep.

What’s the difference between tracking sleep vs. tracking stages of sleep?

In its simplest form, sleep tracking means being able to detect when you’re not awake. While sleeping, you go through four stages of sleep, and the change from one stage to the other is often gradual (and thus difficult to detect).

Can sleep trackers really measure sleep stages?

Some devices, such as the WHOOP*, have been shown in lab tests to reliably measure how much time you spend in each of the four sleep stages. However, most devices fail miserably in that regard, leaving their wearers with incorrect and misleading data.

How do you get more deep sleep?

You can increase the amount of time you spend in restorative phases of sleep — including deep and REM sleep — with a few simple lifestyle changes, including maintaining a consistent sleep schedule, avoiding stimulants and alcohol before going to bed, and other tricks that I discuss in this article.

How long should deep sleep last?

On average, deep and REM sleep combined should make up 40% of your total sleep. Your body’s requirements usually determine how much deep vs. REM sleep you get.

What happens when you don’t get enough sleep?

Your physical and mental performance deteriorates, you become irritable, and you might get sick. For more information on the negative consequences of sleep deprivation, check out this article.

Can sleep trackers diagnose sleep disorders?

Yes, some sleep trackers can assist in detecting sleep apnea and restless leg syndrome by monitoring your respiratory rate and leg movement.

What is a good sleep pattern or sleep cycle?

During the course of a night, your body consistently cycles through four stages of sleep in approximately 90 to 120-minute intervals. In general, most deep sleep occurs in the first half of the night, and most REM sleep occurs in the second half of the night.

Which Fitbits track sleep?

Fitbit offers different levels of sleep tracking among its smart watches (e.g., Fitbit Versa 2) and fitness bands (e.g., Fitbit Charge 3). You can see support for the three primary sleep tracking features below.

Sleep tracking: Versa 2, Versa LITE EDITION, Ionic, Charge 3, Inspire HR, Inspire, Ace 2.

Sleep stages: Versa 2, Versa LITE EDITION, Ionic, Charge 3, Inspire HR.

Sleep score: Versa 2, Versa LITE EDITION, Ionic, Charge 3, Inspire HR.

Does the Fitbit Charge track sleep?

The Fitbit Charge 3 can track sleep and give you a sleep score via the Fitbit app. However, I consider the sleep tracking of Fitbit mostly a gimmick, so don’t expect too much.

How good is sleep monitoring in the Fitbit Ionic?

It’s about as gimmicky as in the other Fitbit models.

What are the four stages of sleep?

The four stages of sleep include awake time, light sleep, deep sleep and REM sleep. Sometimes you also hear the term NREM (or non-REM) sleep, which includes light and deep sleep.

What is the best sleep app?

I haven’t found a smartphone app yet that accurately and reliably tracks sleep. The exceptions, of course, are apps that work together with reliable sleep trackers, such as the WHOOP band.

What’s a smart alarm?

A smart or silent alarm is supposed to prevent waking you up during deep or REM sleep. If you wake up during those restorative stages of sleep, you might feel groggy and not rested.

As you can imagine, a smart alarm is only as reliable as the ability of the tracker to accurately detect the stage of sleep you’re in.

However, if you maintain a consistent sleep pattern, you can wake up every day at the same time without requiring an alarm clock. That’s what I’ve been doing for the past year or so.

Is the WHOOP app available for Android?

Yes, you can download the WHOOP app from the Google Play Store. WHOOP used to be available only on iOS, but that’s not true anymore.

Does a GPS improve sleep monitoring accuracy?

Some devices, such as the Apple Watch and the Polar M430, have a built-in GPS. However that’s only used for activity tracking, such as recording your running route. It’s got nothing to do with sleep monitoring and won’t improve its accuracy or reliability.

Final Words

Accurately tracking sleep is incredibly difficult because none of the consumer-grade devices we have access to can measure brain waves — the only direct indication of sleep.

Instead, wearable and contactless sleep monitors have to use proxies like movement, heart rate, skin conductance, ambient temperature and respiratory rate to guess — more or less reliably — if a person is truly sleeping or not.

Besides getting quality data from as many different biometric sensors as possible, it’s up to the underlying software algorithm to make sense of the data and report back to the user.

The algorithm is where I think most sleep trackers fall short. It takes validation studies and large amounts of data for algorithms to reliably predict if a subject is sleeping and in what stage the person is in.

Based on everything I’ve seen, there are only a handful of sleep trackers out there — including WHOOP* (which is the one I’m using) — that have both the underlying technology and algorithm to accurately track and help you improve your sleep.

All the other trackers are gimmicks that might over-report or under-report your sleep, and are thus virtually useless if your goal is to introduce meaningful lifestyle changes that result in better health and performance.

What sleep trackers have you used, and what was your experience regarding their reliability and accuracy? Let me know by leaving a comment below!

5 thoughts on “Review of the Best Sleep Trackers”

  1. Michael, Ihave worn an Oura ring for about 2 years, I never take it off except to charge it. I wear it through all kinds of workouts including free weight and barbell training, I play golf with it on my right ring finger, over 40 rounds per year, I also frequently go on long bike rides. I have not had any damage to the ring. It’s incredibly tough. Additionally, I just sent the Whoop 3. strap back as it was horribly innacurate in heart rate measurement when compared to either an Apple Watch 4, or Garmin Heart rate strap collected data. (I have dark skin), additionally, WHoop does not allw me enter my own scientifically calculated Max HR, or training zones, so I can’t trust their calory burn calculations. I did not find significant differences between the Sleep measurements from Whoop and Apple Watch with the AutoSleep app, after 3 weeks of comparison. IMHO, Whoop is hugely overpriced for what it delivers.

    Reply
    • Hi Robin,

      Thanks for sharing your experience with the Oura Ring, Apple Watch and WHOOP.

      I can see how playing golf or riding a bike wouldn’t be an issue with Oura — or any ring for that matter. But considering how I’ve ripped up my hands and any ring I’ve ever worn during CrossFit, I don’t see the Oura ring would be a good choice — especially for serious barbell work, kipping/butterfly pull-ups or any other type of CrossFit workout.

      Regarding the accuracy of WHOOP — or any other wrist-worn, optical HR sensor, it’s a matter of fit and, unfortunately, skin color. If the color of the skin color of your palms is lighter than that of your wrists on the outside (which is usually the case), then I can see how Oura might be the better fit for you.

      I also think that the HR sensor of the Apple Watch is as accurate as WHOOP’s, but I seriously doubt it’s better considering the sensor tech both share. Plus, I think WHOOP has a leg up regarding real world data from its pool of users. I don’t think Apple collects any data to the same extent, considering their stance on privacy.

      Regarding your scientifically calculated MAX HR — there shouldn’t be much to calculate. You have you test and find out what your MAX HR (or resting HR) is. You can also test your basal metabolic rate, which is what WHOOP will enable soon with their recently announced partnership with PNOE.

      Regarding AutoSleep — there is just no way in technology hell that the Apple Watch is as accurate as WHOOP. I’m sure AutoSleep gets it right from time to time, but those are lucky shots.

      Cheers,
      Michael

      Reply
    • I haven’t tried it but considering that the Apple Watch hardware itself isn’t a good enough sleep tracker, I don’t see how any app can provide accurate results.

      Reply

Leave a Comment

[Fit In 40 Seconds]
[Fit In 40 Seconds]